LECTURE - 1

SYSTEM PROGRAMMING & SYSTEM
ADMINISTRATION

SECTION -A

INTRODUCTION

What is System Programming?
Components of a System Programming
ranslational Hierarchy

WHAT IS SYSTEM PROGRAMMING ?

System programming is the activity of programming system

software.

Difference b/t System Programming & Application

Programming :

Application programming aims to produce software which

provides services to the user (e.g. word processor),

whereas Systems programming aims to produce software

which provides services to the computer hardware.

EVOLUTION OF THE COMPONENTS OF A PROGRAMMING SYSTEM

Components of Programming system are:-
Assemblers
Loaders
Macros
Compilers
Linkers

Translation Hierarchy followed by Compiler, Assembler, Linker & Loader

l C program |

N 1ranslation Hierarchy

[milar \
. y

Azzsembly language program

Ciject: Machine langusgs m-::u:lule{ Object: Library routine (machine language

Linker

Ezecutable: Machine language program

~

=

Loadsr

| bl=rnory

LOADERS

Once the assembler produces an object program, that
program must be placed into memory and executed.

It is the purpose of the loader to assure that object programs
are placed in memory in an executable form.

The assembler could place the object program directly in
memory and transfer control to it, thereby causing the
machine language program to be executed.

However this would waste memory by leaving the
assembler in memory while the user’s program was being
executed.

Also the programmer would have to retranslate his program
with each execution, thus wasting translation time.

To overcome the problem of wasted translation time and
wasted memory, system programmers developed another
component, called the Loader.

Basic definition (Loaders)

Loader is a program that places programs into memory and
prepares them for execution.

In a simple loading scheme, the assembler outputs the
machine language translation of a program on a secondary
storage device and a loader is placed in memory

The loader places into memory the machine language
version of the user’s program & transfers control to it.

Since the loader program is much smaller then the
assembler, this makes more memory available to the user’s
program.

Machine Languaqges

 Machine languages (first-generation languages) are the
most basic type of computer languages, consisting of
strings of numbers the computer's hardware can use.

« Different types of hardware use different machine
code. For example, IBM computers use different
machine language than Apple computers.

Assembly Lanquages

Assembly languages (second-generation languages)
are only somewhat easier to work with than machine
languages.

To create programs in assembly language, developers
use cryptic English-like phrases to represent strings
of numbers.

The code is then translated into object code, using a
translator called an assembler.

;CLEAR SCREEH USIHG BIDS

CLR: HOU AX,B86080H ;5CROLL SCREEH

HOU BH,30 :COLOUR

HOU CX,00800 :FROM Assembly
HOU DX,184FH sTO 24,79

INT 18H -CALL BIOS; COde

:INPUTTING OF A STRING
KEY: HOU AH,8AH :INPUT REQUEST
LEA DX ,BUFFER ;POINT TO BUFFER WHERE STRING STORED
INT 21H ;CALL DO
RET ;RETURH FROWM SUBROUTIHE TO MAIN PROGRAM;
: DISPLAY STRING TO SCREEHN
SCR: HOU AH, 89 ;DISPLAY REQUEST
LEA DX ,S5TRIHNG ;POINT TO STRIHG
INT 21H ;CALL DOS
RET ;RETURH FROM THIS SUBROUTIHE;

y

\/

Assembler

fag1818a1611818181818181818181810808148
11181181181 81818181 811188181 08818118
gg1g1agi 111111181 811181811161614@
1111118111111 818161161148
1116818611861 611118161118161061 0680140
fag18ag1 1911189180161 6168818161 011161408
111 a1 g1t e11e1 911181 811181811
fag1g18a1 6118181818181 81818181 8108618

Object code

v

ASSEMBLERS

At one time, the computer programmer had a basic machine that interpret
through hardware certain fundamental instructions.

He would program this computer by writing a series of ones and zeros
(machine language), place them into the memory of the machine, and press a
button, whereupon the computer would start to interpret them as instructions.

Programmers find it difficult to write or read programs in machine language, In
their hunt for a more convenient language they began to use a mnemonic
(symbol) for each machine instruction, which they could subsequently translate
Into machine language.

Such a mnemonic machine language is now called an assembly language.

Programs known as assemblers were written to automate/computerize the
translation of assembly language into machine language. The input to an
assembler program is called the source program; the output is a machine
language translation object program).

TYPICAL APPLICATIONS

Assembly language is typically used in a system's boot code, (BIOS on IBM-
compatible PC systems and CP/M), the low-level code that initializes and
tests the system hardware prior to booting the OS, and is often stored Iin
ROM.

Some compilers translate high-level languages into assembly first before

fully compiling, allowing the assembly code to be viewed for debugging and

optimization purposes.
Relatively low-level languages, such as C, allow the programmer to embed

assembly language directly in the source code. Programs using such

facilities, such as the Linux kernel, can then construct abstractions using

different assembly language on each hardware platform. The system's

portable code can then use these processor-specific components through a

LR B N R . BN W

SCOPE OF RESEARCH

Demand

The realization that many users were writing the same programs

led to the development of “ready-made” programs (packages).

These packages were written by computer manufacturers or

USETS.

As the programmer become more sophisticated, he wanted to
mix and combine ready-made programs with his own.

In response to this demand:

A facility need to be provided where by the user could write a main

program that used several other programs or subroutines.

